Author
Listed:
- Fengsheng Zeng
- Qin Wang
- Man Leung Wong
Abstract
With the continuous application and development of big data and algorithm technology, intelligent recommendation algorithms are gradually affecting all aspects of people’s daily life. The impact of smart recommendation algorithm has both advantages and disadvantages; it can facilitate people’s life, but also exists at the same time the invasion of privacy, information cocoon, and other problems. How to optimize intelligent recommendation algorithms to serve the society more safely and efficiently becomes a problem that needs to be solved nowadays. We propose an intelligent recommendation algorithm combining recurrent neural network (RNN) and knowledge graph (KG) and analyze and demonstrate its performance by building models and experiments. The results show that among the five different recommendation models, the intelligent recommendation algorithm model combining RNN and knowledge graph has the highest AUC and ACC values in the Book-Crossing and MovieLens-1M. At the same time, the algorithm’s rating prediction error values are small (less than 2%) in extracting different users’ ratings for different books. In addition, the intelligent recommendation algorithm combining RNN and knowledge graph has the lowest RMSE and MAE values in the comparison of three different recommendation algorithms, indicating that it has better performance and stability, which is important for the improvement of user recommendation effect.
Suggested Citation
Fengsheng Zeng & Qin Wang & Man Leung Wong, 2022.
"Intelligent Recommendation Algorithm Combining RNN and Knowledge Graph,"
Journal of Applied Mathematics, Hindawi, vol. 2022, pages 1-11, December.
Handle:
RePEc:hin:jnljam:7323560
DOI: 10.1155/2022/7323560
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:7323560. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.