IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/624516.html
   My bibliography  Save this article

Optimal Control for Multistage Nonlinear Dynamic System of Microbial Bioconversion in Batch Culture

Author

Listed:
  • Lei Wang
  • Zhilong Xiu
  • Yuduo Zhang
  • Enmin Feng

Abstract

In batch culture of glycerol biodissimilation to 1,3-propanediol (1,3-PD), the aim of adding glycerol is to obtain as much 1,3-PD as possible. Taking the yield intensity of 1,3-PD as the performance index and the initial concentration of biomass, glycerol, and terminal time as the control vector, we propose an optimal control model subject to a multistage nonlinear dynamical system and constraints of continuous state. A computational approach is constructed to seek the solution of the above model. Firstly, we transform the optimal control problem into the one with fixed terminal time. Secondly, we transcribe the optimal control model into an unconstrained one based on the penalty functions and an extension of the state space. Finally, by approximating the control function with simple functions, we transform the unconstrained optimal control problem into a sequence of nonlinear programming problems, which can be solved using gradient-based optimization techniques. The convergence analysis and optimality function of the algorithm are also investigated. Numerical results show that, by employing the optimal control, the concentration of 1,3-PD at the terminal time can be increased, compared with the previous results.

Suggested Citation

  • Lei Wang & Zhilong Xiu & Yuduo Zhang & Enmin Feng, 2011. "Optimal Control for Multistage Nonlinear Dynamic System of Microbial Bioconversion in Batch Culture," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-11, July.
  • Handle: RePEc:hin:jnljam:624516
    DOI: 10.1155/2011/624516
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2011/624516.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2011/624516.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2011/624516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Jinlong & Zhu, Xi & Zhang, Xu & Yin, Hongchao & Feng, Enmin & Xiu, Zhilong, 2014. "Robust identification of enzymatic nonlinear dynamical systems for 1,3-propanediol transport mechanisms in microbial batch culture," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 150-163.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:624516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.