IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/6050834.html
   My bibliography  Save this article

A Mathematical Model for Nipah Virus Infection

Author

Listed:
  • Assefa Denekew Zewdie
  • Sunita Gakkhar

Abstract

It has been reported that unprotected contact with the dead bodies of infected individuals is a plausible way of Nipah virus transmission. An SIRD model is proposed in this paper to investigate the impact of unprotected contact with dead bodies of infected individuals before burial or cremation and their disposal rate on the dynamics of Nipah virus infection. The model is analyzed, and the reproduction number is computed. It is established that the disease-free state is globally asymptotically stable when the reproduction number is less than unity and unstable if it is greater than unity. By using the central manifold theory, we observe that the endemic equilibrium is locally stable near to unity. It is concluded that minimizing unsafe contact with the infected dead body and/or burial or cremation as fast as possible contributes positively. Further, the numerical simulations for the given choice of data and initial conditions illustrate that the endemic state is stable and the disease persists in the community when the reproduction number is greater than one.

Suggested Citation

  • Assefa Denekew Zewdie & Sunita Gakkhar, 2020. "A Mathematical Model for Nipah Virus Infection," Journal of Applied Mathematics, Hindawi, vol. 2020, pages 1-10, September.
  • Handle: RePEc:hin:jnljam:6050834
    DOI: 10.1155/2020/6050834
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2020/6050834.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2020/6050834.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6050834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baleanu, Dumitru & Shekari, Parisa & Torkzadeh, Leila & Ranjbar, Hassan & Jajarmi, Amin & Nouri, Kazem, 2023. "Stability analysis and system properties of Nipah virus transmission: A fractional calculus case study," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:6050834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.