IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/594501.html
   My bibliography  Save this article

Linear SVM-Based Android Malware Detection for Reliable IoT Services

Author

Listed:
  • Hyo-Sik Ham
  • Hwan-Hee Kim
  • Myung-Sup Kim
  • Mi-Jung Choi

Abstract

Current many Internet of Things (IoT) services are monitored and controlled through smartphone applications. By combining IoT with smartphones, many convenient IoT services have been provided to users. However, there are adverse underlying effects in such services including invasion of privacy and information leakage. In most cases, mobile devices have become cluttered with important personal user information as various services and contents are provided through them. Accordingly, attackers are expanding the scope of their attacks beyond the existing PC and Internet environment into mobile devices. In this paper, we apply a linear support vector machine (SVM) to detect Android malware and compare the malware detection performance of SVM with that of other machine learning classifiers. Through experimental validation, we show that the SVM outperforms other machine learning classifiers.

Suggested Citation

  • Hyo-Sik Ham & Hwan-Hee Kim & Myung-Sup Kim & Mi-Jung Choi, 2014. "Linear SVM-Based Android Malware Detection for Reliable IoT Services," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-10, September.
  • Handle: RePEc:hin:jnljam:594501
    DOI: 10.1155/2014/594501
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2014/594501.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2014/594501.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/594501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ritika Raj Krishna & Aanchal Priyadarshini & Amitkumar V. Jha & Bhargav Appasani & Avireni Srinivasulu & Nicu Bizon, 2021. "State-of-the-Art Review on IoT Threats and Attacks: Taxonomy, Challenges and Solutions," Sustainability, MDPI, vol. 13(16), pages 1-46, August.
    2. Mohammed Talal & A. A. Zaidan & B. B. Zaidan & O. S. Albahri & M. A. Alsalem & A. S. Albahri & A. H. Alamoodi & M. L. M. Kiah & F. M. Jumaah & Mussab Alaa, 2019. "Comprehensive review and analysis of anti-malware apps for smartphones," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(2), pages 285-337, October.
    3. Sharfah Ratibah Tuan Mat & Mohd Faizal Ab Razak & Mohd Nizam Mohmad Kahar & Juliza Mohamad Arif & Salwana Mohamad & Ahmad Firdaus, 2021. "Towards a systematic description of the field using bibliometric analysis: malware evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2013-2055, March.
    4. Sherif El-Gendy & Mahmoud Said Elsayed & Anca Jurcut & Marianne A. Azer, 2023. "Privacy Preservation Using Machine Learning in the Internet of Things," Mathematics, MDPI, vol. 11(16), pages 1-35, August.
    5. Iqbal H. Sarker, 2023. "Machine Learning for Intelligent Data Analysis and Automation in Cybersecurity: Current and Future Prospects," Annals of Data Science, Springer, vol. 10(6), pages 1473-1498, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:594501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.