Author
Listed:
- Fadhlan Kamaruzaman
- Amir Akramin Shafie
- Yasir M. Mustafah
Abstract
We elucidate the practical implementation of Spiking Neural Network (SNN) as local ensembles of classifiers. Synaptic time constant is used as learning parameter in representing the variations learned from a set of training data at classifier level. This classifier uses coincidence detection (CD) strategy trained in supervised manner using a novel supervised learning method called Prediction which adjusts the precise timing of output spikes towards the desired spike timing through iterative adaptation of . This paper also discusses the approximation of spike timing in Spike Response Model (SRM) for the purpose of coincidence detection. This process significantly speeds up the whole process of learning and classification. Performance evaluations with face datasets such as AR, FERET, JAFFE, and CK+ datasets show that the proposed method delivers better face classification performance than the network trained with Supervised Synaptic-Time Dependent Plasticity (STDP). We also found that the proposed method delivers better classification accuracy than nearest neighbor, ensembles of NN, and Support Vector Machines. Evaluation on several types of spike codings also reveals that latency coding delivers the best result for face classification as well as for classification of other multivariate datasets.
Suggested Citation
Fadhlan Kamaruzaman & Amir Akramin Shafie & Yasir M. Mustafah, 2015.
"Coincidence Detection Using Spiking Neurons with Application to Face Recognition,"
Journal of Applied Mathematics, Hindawi, vol. 2015, pages 1-20, October.
Handle:
RePEc:hin:jnljam:534198
DOI: 10.1155/2015/534198
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:534198. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.