IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/528082.html
   My bibliography  Save this article

A Modification of the Moving Least-Squares Approximation in the Element-Free Galerkin Method

Author

Listed:
  • Yang Cao
  • Jun-Liang Dong
  • Lin-Quan Yao

Abstract

The element-free Galerkin (EFG) method is one of the widely used meshfree methods for solving partial differential equations. In the EFG method, shape functions are derived from a moving least-squares (MLS) approximation, which involves the inversion of a small matrix for every point of interest. To avoid the calculation of matrix inversion in the formulation of the shape functions, an improved MLS approximation is presented, where an orthogonal function system with a weight function is used. However, it can also lead to ill-conditioned or even singular system of equations. In this paper, aspects of the IMLS approximation are analyzed in detail. The reason why singularity problem occurs is studied. A novel technique based on matrix triangular process is proposed to solve this problem. It is shown that the EFG method with present technique is very effective in constructing shape functions. Numerical examples are illustrated to show the efficiency and accuracy of the proposed method. Although our study relies on monomial basis functions, it is more general than existing methods and can be extended to any basis functions.

Suggested Citation

  • Yang Cao & Jun-Liang Dong & Lin-Quan Yao, 2014. "A Modification of the Moving Least-Squares Approximation in the Element-Free Galerkin Method," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-13, March.
  • Handle: RePEc:hin:jnljam:528082
    DOI: 10.1155/2014/528082
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2014/528082.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2014/528082.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/528082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng-Yu Ku & Jing-En Xiao & Chih-Yu Liu, 2020. "A Novel Meshfree Approach with a Radial Polynomial for Solving Nonhomogeneous Partial Differential Equations," Mathematics, MDPI, vol. 8(2), pages 1-22, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:528082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.