Author
Listed:
- Wayan Somayasa
- Muhammad Kabil Djafar
- Norma Muhtar
- Desak Ketut Sutiari
- Arvind Kumar Misra
Abstract
In this paper, we study asymptotic model change detection in multivariate linear regression by using the Kolmogorov–Smirnov function of the partial sum process of recursive residuals. We approximate the rejection region and also the power function of the test by establishing a functional central limit theorem for the sequence of the partial sum processes of the recursive residuals of the observations. When the assumed model is true, the limit process is given by the standard multivariate Brownian motion which does not depend on the regression functions. However, when the assumed model is not true (some models change), the limit process is represented by a vector of deterministic trend plus the standard multivariate Brownian motion. The finite sample size rejection region and the power of the test are investigated by means of Monte Carlo simulation. The simulation study shows evidence that the proposed test is consistent in the sense that it attains the power larger than the size of the test when the hypothesis is not true. We also demonstrate the application of the proposed test method to Indonesian economic growth data in which we test the adequacy of three-variate low-order polynomial model. The test result shows that the growth of the Indonesian economy is neither simultaneously constant nor linear. The test has successfully detect the appearance of a change in the model which is mainly caused by the COVID-19 pandemic in 2020.
Suggested Citation
Wayan Somayasa & Muhammad Kabil Djafar & Norma Muhtar & Desak Ketut Sutiari & Arvind Kumar Misra, 2024.
"Simultaneous Model Change Detection in Multivariate Linear Regression With Application to Indonesian Economic Growth Data,"
Journal of Applied Mathematics, Hindawi, vol. 2024, pages 1-16, May.
Handle:
RePEc:hin:jnljam:4499481
DOI: 10.1155/2024/4499481
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:4499481. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.