IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/417942.html
   My bibliography  Save this article

Numerical Solutions of a Variable-Order Fractional Financial System

Author

Listed:
  • Shichang Ma
  • Yufeng Xu
  • Wei Yue

Abstract

The numerical solution of a variable-order fractional financial system is calculated by using the Adams-Bashforth-Moulton method. The derivative is defined in the Caputo variable-order fractional sense. Numerical examples show that the Adams-Bashforth-Moulton method can be applied to solve such variable-order fractional differential equations simply and effectively. The convergent order of the method is also estimated numerically. Moreover, the stable equilibrium point, quasiperiodic trajectory, and chaotic attractor are found in the variable-order fractional financial system with proper order functions.

Suggested Citation

  • Shichang Ma & Yufeng Xu & Wei Yue, 2012. "Numerical Solutions of a Variable-Order Fractional Financial System," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-14, September.
  • Handle: RePEc:hin:jnljam:417942
    DOI: 10.1155/2012/417942
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2012/417942.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2012/417942.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/417942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Souad Bensid Ahmed & Adel Ouannas & Mohammed Al Horani & Giuseppe Grassi, 2022. "The Discrete Fractional Variable-Order Tinkerbell Map: Chaos, 0–1 Test, and Entropy," Mathematics, MDPI, vol. 10(17), pages 1-13, September.
    2. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    3. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    4. Giresse, Tene Alain & Crepin, Kofane Timoleon & Martin, Tchoffo, 2019. "Generalized synchronization of the extended Hindmarsh–Rose neuronal model with fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 311-319.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:417942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.