IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/259371.html
   My bibliography  Save this article

An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs

Author

Listed:
  • Eman S. Alaidarous
  • Malik Zaka Ullah
  • Fayyaz Ahmad
  • A.S. Al-Fhaid

Abstract

In this research paper, we present higher-order quasilinearization methods for the boundary value problems as well as coupled boundary value problems. The construction of higher-order convergent methods depends on a decomposition method which is different from Adomain decomposition method (Motsa and Sibanda, 2013). The reported method is very general and can be extended to desired order of convergence for highly nonlinear differential equations and also computationally superior to proposed iterative method based on Adomain decomposition because our proposed iterative scheme avoids the calculations of Adomain polynomials and achieves the same computational order of convergence as authors have claimed in Motsa and Sibanda, 2013. In order to check the validity and computational performance, the constructed iterative schemes are also successfully applied to bifurcation problems to calculate the values of critical parameters. The numerical performance is also tested for one-dimension Bratu and Frank-Kamenetzkii equations.

Suggested Citation

  • Eman S. Alaidarous & Malik Zaka Ullah & Fayyaz Ahmad & A.S. Al-Fhaid, 2013. "An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-11, November.
  • Handle: RePEc:hin:jnljam:259371
    DOI: 10.1155/2013/259371
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2013/259371.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2013/259371.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/259371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramandeep Behl & Ioannis K. Argyros, 2020. "A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems," Mathematics, MDPI, vol. 8(2), pages 1-21, February.
    2. Fayyaz Ahmad & Shafiq Ur Rehman & Malik Zaka Ullah & Hani Moaiteq Aljahdali & Shahid Ahmad & Ali Saleh Alshomrani & Juan A. Carrasco & Shamshad Ahmad & Sivanandam Sivasankaran, 2017. "Frozen Jacobian Multistep Iterative Method for Solving Nonlinear IVPs and BVPs," Complexity, Hindawi, vol. 2017, pages 1-30, May.
    3. Vikash Kumar Sinha & Prashanth Maroju, 2023. "New Development of Variational Iteration Method Using Quasilinearization Method for Solving Nonlinear Problems," Mathematics, MDPI, vol. 11(4), pages 1-11, February.
    4. Mozafar Rostami & Taher Lotfi & Ali Brahmand, 2019. "A Fast Derivative-Free Iteration Scheme for Nonlinear Systems and Integral Equations," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    5. Ullah, Malik Zaka & Serra-Capizzano, S. & Ahmad, Fayyaz & Al-Aidarous, Eman S., 2015. "Higher order multi-step iterative method for computing the numerical solution of systems of nonlinear equations: Application to nonlinear PDEs and ODEs," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 972-987.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:259371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.