IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/189753.html
   My bibliography  Save this article

Approximation Analysis of Gradient Descent Algorithm for Bipartite Ranking

Author

Listed:
  • Hong Chen
  • Fangchao He
  • Zhibin Pan

Abstract

We introduce a gradient descent algorithm for bipartite ranking with general convex losses. The implementation of this algorithm is simple, and its generalization performance is investigated. Explicit learning rates are presented in terms of the suitable choices of the regularization parameter and the step size. The result fills the theoretical gap in learning rates for ranking problem with general convex losses.

Suggested Citation

  • Hong Chen & Fangchao He & Zhibin Pan, 2012. "Approximation Analysis of Gradient Descent Algorithm for Bipartite Ranking," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-13, July.
  • Handle: RePEc:hin:jnljam:189753
    DOI: 10.1155/2012/189753
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2012/189753.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2012/189753.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/189753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Huang & Xun Zhang, 2021. "Randomized Smoothing Variance Reduction Method for Large-Scale Non-smooth Convex Optimization," SN Operations Research Forum, Springer, vol. 2(2), pages 1-28, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:189753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.