IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaor/357954.html
   My bibliography  Save this article

Solving the Matrix Nearness Problem in the Maximum Norm by Applying a Projection and Contraction Method

Author

Listed:
  • M. H. Xu
  • H. Shao

Abstract

Let S be a closed convex set of matrices and C be a given matrix. The matrix nearness problem considered in this paper is to find a matrix X in the set S at which max { | ð ‘¥ ð ‘– ð ‘— − ð ‘ ð ‘– ð ‘— | } reaches its minimum value. In order to solve the matrix nearness problem, the problem is reformulated to a min-max problem firstly, then the relationship between the min-max problem and a monotone linear variational inequality (LVI) is built. Since the matrix in the LVI problem has a special structure, a projection and contraction method is suggested to solve this LVI problem. Moreover, some implementing details of the method are presented in this paper. Finally, preliminary numerical results are reported, which show that this simple algorithm is promising for this matrix nearness problem.

Suggested Citation

  • M. H. Xu & H. Shao, 2012. "Solving the Matrix Nearness Problem in the Maximum Norm by Applying a Projection and Contraction Method," Advances in Operations Research, Hindawi, vol. 2012, pages 1-15, August.
  • Handle: RePEc:hin:jnlaor:357954
    DOI: 10.1155/2012/357954
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AOR/2012/357954.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AOR/2012/357954.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/357954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaor:357954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.