IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaor/279030.html
   My bibliography  Save this article

Well-Posedness and Primal-Dual Analysis of Some Convex Separable Optimization Problems

Author

Listed:
  • Stefan M. Stefanov

Abstract

We focus on some convex separable optimization problems, considered by the author in previous papers, for which problems, necessary and sufficient conditions or sufficient conditions have been proved, and convergent algorithms of polynomial computational complexity have been proposed for solving these problems. The concepts of well-posedness of optimization problems in the sense of Tychonov, Hadamard, and in a generalized sense, as well as calmness in the sense of Clarke, are discussed. It is shown that the convex separable optimization problems under consideration are calm in the sense of Clarke. The concept of stability of the set of saddle points of the Lagrangian in the sense of Gol'shtein is also discussed, and it is shown that this set is not stable for the “classical” Lagrangian. However, it turns out that despite this instability, due to the specificity of the approach, suggested by the author for solving problems under consideration, it is not necessary to use modified Lagrangians but only the “classical” Lagrangians. Also, a primal-dual analysis for problems under consideration in view of methods for solving them is presented.

Suggested Citation

  • Stefan M. Stefanov, 2013. "Well-Posedness and Primal-Dual Analysis of Some Convex Separable Optimization Problems," Advances in Operations Research, Hindawi, vol. 2013, pages 1-10, April.
  • Handle: RePEc:hin:jnlaor:279030
    DOI: 10.1155/2013/279030
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AOR/2013/279030.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AOR/2013/279030.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/279030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaor:279030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.