IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/637375.html
   My bibliography  Save this article

A Quantum Mermin-Wagner Theorem for a Generalized Hubbard Model

Author

Listed:
  • Mark Kelbert
  • Yurii Suhov

Abstract

This paper is the second in a series of papers considering symmetry properties of bosonic quantum systems over 2D graphs, with continuous spins, in the spirit of the Mermin-Wagner theorem. In the model considered here the phase space of a single spin is where is a -dimensional unit torus with a flat metric. The phase space of spins is , the subspace of formed by functions symmetric under the permutations of the arguments. The Fock space yields the phase space of a system of a varying (but finite) number of particles. We associate a space with each vertex of a graph satisfying a special bidimensionality property. (Physically, vertex represents a heavy “atom” or “ion” that does not move but attracts a number of “light” particles.) The kinetic energy part of the Hamiltonian includes (i) , the minus a half of the Laplace operator on , responsible for the motion of a particle while “trapped” by a given atom, and (ii) an integral term describing possible “jumps” where a particle may join another atom. The potential part is an operator of multiplication by a function (the potential energy of a classical configuration) which is a sum of (a) one-body potentials , , describing a field generated by a heavy atom, (b) two-body potentials , , showing the interaction between pairs of particles belonging to the same atom, and (c) two-body potentials , , scaled along the graph distance between vertices , which gives the interaction between particles belonging to different atoms. The system under consideration can be considered as a generalized (bosonic) Hubbard model. We assume that a connected Lie group acts on , represented by a Euclidean space or torus of dimension , preserving the metric and the volume in . Furthermore, we suppose that the potentials , , and are -invariant. The result of the paper is that any (appropriately defined) Gibbs states generated by the above Hamiltonian is -invariant, provided that the thermodynamic variables (the fugacity and the inverse temperature ) satisfy a certain restriction. The definition of a Gibbs state (and its analysis) is based on the Feynman-Kac representation for the density matrices.

Suggested Citation

  • Mark Kelbert & Yurii Suhov, 2013. "A Quantum Mermin-Wagner Theorem for a Generalized Hubbard Model," Advances in Mathematical Physics, Hindawi, vol. 2013, pages 1-20, September.
  • Handle: RePEc:hin:jnlamp:637375
    DOI: 10.1155/2013/637375
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2013/637375.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2013/637375.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/637375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuri Suhov & Mark Kelbert & Izabella Stuhl, 2020. "The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas," Mathematics, MDPI, vol. 8(10), pages 1-41, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:637375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.