IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/5703916.html
   My bibliography  Save this article

Modified Fractional Reduced Differential Transform Method for the Solution of Multiterm Time-Fractional Diffusion Equations

Author

Listed:
  • Salah Abuasad
  • Ishak Hashim
  • Samsul Ariffin Abdul Karim

Abstract

In this study, we introduce a new modification of fractional reduced differential transform method (m-FRDTM) to find exact and approximate solutions for nonhomogeneous linear multiterm time-fractional diffusion equations (MT-TFDEs) of constant coefficients in a bounded domain with suitable initial conditions. Different applications in two and three fractional order terms are given to illustrate our new modification. The approximate solutions are given in the form of series solutions. The results show that the m-FRDTM for MT-TFDEs is a powerful method and can be generalized to other types of multiterm time-fractional equations.

Suggested Citation

  • Salah Abuasad & Ishak Hashim & Samsul Ariffin Abdul Karim, 2019. "Modified Fractional Reduced Differential Transform Method for the Solution of Multiterm Time-Fractional Diffusion Equations," Advances in Mathematical Physics, Hindawi, vol. 2019, pages 1-14, May.
  • Handle: RePEc:hin:jnlamp:5703916
    DOI: 10.1155/2019/5703916
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2019/5703916.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2019/5703916.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/5703916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Günerhan, Hatıra & Dutta, Hemen & Dokuyucu, Mustafa Ali & Adel, Waleed, 2020. "Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Mohamed M. Mousa & Fahad Alsharari, 2021. "Convergence and Error Estimation of a New Formulation of Homotopy Perturbation Method for Classes of Nonlinear Integral/Integro-Differential Equations," Mathematics, MDPI, vol. 9(18), pages 1-14, September.
    3. Safyan Mukhtar & Salah Abuasad & Ishak Hashim & Samsul Ariffin Abdul Karim, 2020. "Effective Method for Solving Different Types of Nonlinear Fractional Burgers’ Equations," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    4. Alberto Antonini & Valentina Anna Lia Salomoni, 2023. "Modelling Fractional Advection–Diffusion Processes via the Adomian Decomposition," Mathematics, MDPI, vol. 11(12), pages 1-30, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:5703916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.