IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/5287132.html
   My bibliography  Save this article

Numerical Simulation to Air Pollution Emission Control near an Industrial Zone

Author

Listed:
  • Pravitra Oyjinda
  • Nopparat Pochai

Abstract

A rapid industrial development causes several environment pollution problems. One of the main problems is air pollution, which affects human health and the environment. The consideration of an air pollutant has to focus on a polluted source. An industrial factory is an important reason that releases the air pollutant into the atmosphere. Thus a mathematical model, an atmospheric diffusion model, is used to estimate air quality that can be used to describe the sulfur dioxide dispersion. In this research, numerical simulations to air pollution measurement near industrial zone are proposed. The air pollution control strategies are simulated to achieve desired pollutant concentration levels. The monitoring points are installed to detect the air pollution concentration data. The numerical experiment of air pollution consisted of different situations such as normal and controlled emissions. The air pollutant concentration is approximated by using an explicit finite difference technique. The solutions of calculated air pollutant concentration in each controlled and uncontrolled point source at the monitoring points are compared. The air pollutant concentration levels for each monitoring point are controlled to be at or below the national air quality standard near industrial zone index.

Suggested Citation

  • Pravitra Oyjinda & Nopparat Pochai, 2017. "Numerical Simulation to Air Pollution Emission Control near an Industrial Zone," Advances in Mathematical Physics, Hindawi, vol. 2017, pages 1-7, October.
  • Handle: RePEc:hin:jnlamp:5287132
    DOI: 10.1155/2017/5287132
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2017/5287132.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2017/5287132.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5287132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahaboddin Shamshirband & Masoud Hadipoor & Alireza Baghban & Amir Mosavi & Jozsef Bukor & Annamária R. Várkonyi-Kóczy, 2019. "Developing an ANFIS-PSO Model to Predict Mercury Emissions in Combustion Flue Gases," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    2. Mykola Dyvak & Iryna Spivak & Andriy Melnyk & Volodymyr Manzhula & Taras Dyvak & Artur Rot & Marcin Hernes, 2023. "Modeling Based on the Analysis of Interval Data of Atmospheric Air Pollution Processes with Nitrogen Dioxide due to the Spread of Vehicle Exhaust Gases," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    3. Darae Jeong & Sangkwon Kim & Chaeyoung Lee & Junseok Kim, 2020. "An Accurate and Practical Explicit Hybrid Method for the Chan–Vese Image Segmentation Model," Mathematics, MDPI, vol. 8(7), pages 1-14, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:5287132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.