IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/341964.html
   My bibliography  Save this article

Spectral Relaxation Method and Spectral Quasilinearization Method for Solving Unsteady Boundary Layer Flow Problems

Author

Listed:
  • S. S. Motsa
  • P. G. Dlamini
  • M. Khumalo

Abstract

Nonlinear partial differential equations (PDEs) modelling unsteady boundary-layer flows are solved by the spectral relaxation method (SRM) and the spectral quasilinearization method (SQLM). The SRM and SQLM are Chebyshev pseudospectral based methods that have been successfully used to solve nonlinear boundary layer flow problems described by systems of ordinary differential equations. In this paper application of these methods is extended, for the first time, to systems of nonlinear PDEs that model unsteady boundary layer flow. The new extension is tested on two problems: boundary layer flow caused by an impulsively stretching plate and a coupled four-equation system that models the problem of unsteady MHD flow and mass transfer in a porous space. Numerous simulation experiments are conducted to determine the accuracy and compare the computational performance of the proposed methods against the popular Keller-box finite difference scheme which is widely accepted as being one of the ideal tools for solving nonlinear PDEs that model boundary layer flow problems. The results indicate that the methods are more efficient in terms of computational accuracy and speed compared with the Keller-box.

Suggested Citation

  • S. S. Motsa & P. G. Dlamini & M. Khumalo, 2014. "Spectral Relaxation Method and Spectral Quasilinearization Method for Solving Unsteady Boundary Layer Flow Problems," Advances in Mathematical Physics, Hindawi, vol. 2014, pages 1-12, June.
  • Handle: RePEc:hin:jnlamp:341964
    DOI: 10.1155/2014/341964
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2014/341964.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2014/341964.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/341964?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hillary Muzara & Stanford Shateyi, 2023. "Magnetohydrodynamics Williamson Nanofluid Flow over an Exponentially Stretching Surface with a Chemical Reaction and Thermal Radiation," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    2. Tunde Abdulkadir Yusuf & Adeshina Taofeeq Adeosun & Victor Olajide Akinsola & Ramoshweu Solomon Lebelo & Oluwadamilare Joseph Akinremi, 2023. "Numerical Investigation for Nonlinear Thermal Radiation in MHD Cu–Water Nanofluid Flow in a Channel with Convective Boundary Conditions," Mathematics, MDPI, vol. 11(15), pages 1-16, August.
    3. Stanford Shateyi & Hillary Muzara, 2020. "On Numerical Analysis of Carreau–Yasuda Nanofluid Flow over a Non-Linearly Stretching Sheet under Viscous Dissipation and Chemical Reaction Effects," Mathematics, MDPI, vol. 8(7), pages 1-24, July.
    4. Lekoko, Modisawatsona Lucas & Oloniiju, Shina Daniel & Magalakwe, Gabriel, 2022. "Analysis of buoyancy driven flow inside a vertical filter chamber," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:341964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.