Author
Listed:
- M. I. Khodabocus
- M. Sellier
- V. Nock
Abstract
A composite droplet made of two miscible fluids in a narrow tube generally moves under the action of capillarity until complete mixture is attained. This physical situation is analysed here on a combined theoretical and numerical analysis. The mathematical framework consists of the two-phase flow phase-field equation set, an advection-diffusion chemical concentration equation, and closure relationships relating the surface tensions to the chemical concentration. The numerical framework is composed of the COMSOL Laminar two-phase flow phase-field method coupled with an advection-diffusion chemical concentration equation. Through transient studies, we show that the penetrating length of the bidroplet system into the capillary tube is linear at early-time regime and exponential at late-time regime. Through parametric studies, we show that the rate of penetration of the bidroplet system into the capillary tube is proportional to a time-dependent exponential function. We also show that this speed obeys the Poiseuille law at the early-time regime. A series of position, speed-versus-property graphs are included to support the analysis. Finally, the overall results are contrasted with available experimental data, grouped together to settle a general mathematical description of the phenomenon, and explained and concluded on this basis.
Suggested Citation
M. I. Khodabocus & M. Sellier & V. Nock, 2016.
"Slug Self-Propulsion in a Capillary Tube Mathematical Modeling and Numerical Simulation,"
Advances in Mathematical Physics, Hindawi, vol. 2016, pages 1-16, October.
Handle:
RePEc:hin:jnlamp:1234642
DOI: 10.1155/2016/1234642
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:1234642. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.