IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/982925.html
   My bibliography  Save this article

Semilocal Convergence Analysis for Inexact Newton Method under Weak Condition

Author

Listed:
  • Xiubin Xu
  • Yuan Xiao
  • Tao Liu

Abstract

Under the hypothesis that the first derivative satisfies some kind of weak Lipschitz conditions, a new semilocal convergence theorem for inexact Newton method is presented. Unified convergence criteria ensuring the convergence of inexact Newton method are also established. Applications to some special cases such as the Kantorovich type conditions and ð ›¾ -Conditions are provided and some well-known convergence theorems for Newton's method are obtained as corollaries.

Suggested Citation

  • Xiubin Xu & Yuan Xiao & Tao Liu, 2012. "Semilocal Convergence Analysis for Inexact Newton Method under Weak Condition," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-13, August.
  • Handle: RePEc:hin:jnlaaa:982925
    DOI: 10.1155/2012/982925
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2012/982925.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2012/982925.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/982925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Vipin Kumar, 2020. "On the convergence of inexact Newton-like methods under mild differentiability conditions," Applied Mathematics and Computation, Elsevier, vol. 370(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:982925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.