IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/957350.html
   My bibliography  Save this article

Extended Laguerre Polynomials Associated with Hermite, Bernoulli, and Euler Numbers and Polynomials

Author

Listed:
  • Taekyun Kim
  • Dae San Kim

Abstract

Let ð ð ‘› = { ð ‘ ( ð ‘¥ ) ∈ â„ [ ð ‘¥ ] ∣ d e g ð ‘ ( ð ‘¥ ) ≤ ð ‘› } be an inner product space with the inner product ∫ ⟨ ð ‘ ( ð ‘¥ ) , ð ‘ž ( ð ‘¥ ) ⟩ = ∞ 0 ð ‘¥ ð ›¼ ð ‘’ − ð ‘¥ ð ‘ ( ð ‘¥ ) ð ‘ž ( ð ‘¥ ) ð ‘‘ ð ‘¥ , where ð ‘ ( ð ‘¥ ) , ð ‘ž ( ð ‘¥ ) ∈ ð ð ‘› and ð ›¼ ∈ â„ with ð ›¼ > − 1 . In this paper we study the properties of the extended Laguerre polynomials which are an orthogonal basis for ð ð ‘› . From those properties, we derive some interesting relations and identities of the extended Laguerre polynomials associated with Hermite, Bernoulli, and Euler numbers and polynomials.

Suggested Citation

  • Taekyun Kim & Dae San Kim, 2012. "Extended Laguerre Polynomials Associated with Hermite, Bernoulli, and Euler Numbers and Polynomials," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-15, September.
  • Handle: RePEc:hin:jnlaaa:957350
    DOI: 10.1155/2012/957350
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2012/957350.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2012/957350.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/957350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taekyun Kim & Dae San Kim & Hyunseok Lee & Jongkyum Kwon, 2020. "Studies in Sums of Finite Products of the Second, Third, and Fourth Kind Chebyshev Polynomials," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    2. Dae San Kim & Dmitry V. Dolgy & Dojin Kim & Taekyun Kim, 2019. "Representing by Orthogonal Polynomials for Sums of Finite Products of Fubini Polynomials," Mathematics, MDPI, vol. 7(4), pages 1-16, March.
    3. Taekyun Kim & Dae San Kim & Jongkyum Kwon & Dmitry V. Dolgy, 2018. "Expressing Sums of Finite Products of Chebyshev Polynomials of the Second Kind and of Fibonacci Polynomials by Several Orthogonal Polynomials," Mathematics, MDPI, vol. 6(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:957350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.