IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/952601.html
   My bibliography  Save this article

Asymptotic Behaviour of a Two-Dimensional Differential System with a Finite Number of Nonconstant Delays under the Conditions of Instability

Author

Listed:
  • Zdeněk Šmarda
  • Josef Rebenda

Abstract

The asymptotic behaviour of a real two-dimensional differential system ∑ ð ‘¥ ′ ( ð ‘¡ ) = ð – ( ð ‘¡ ) ð ‘¥ ( ð ‘¡ ) + ð ‘š 𠑘 = 1 ð –¡ 𠑘 ( ð ‘¡ ) ð ‘¥ ( 𠜃 𠑘 ( ð ‘¡ ) ) + â„Ž ( ð ‘¡ , ð ‘¥ ( ð ‘¡ ) , ð ‘¥ ( 𠜃 1 ( ð ‘¡ ) ) , … , ð ‘¥ ( 𠜃 ð ‘š ( ð ‘¡ ) ) ) with unbounded nonconstant delays ð ‘¡ − 𠜃 𠑘 ( ð ‘¡ ) ≥ 0 satisfying l i m ð ‘¡ → ∞ 𠜃 𠑘 ( ð ‘¡ ) = ∞ is studied under the assumption of instability. Here, ð – , ð –¡ 𠑘 , and â„Ž are supposed to be matrix functions and a vector function. The conditions for the instable properties of solutions and the conditions for the existence of bounded solutions are given. The methods are based on the transformation of the considered real system to one equation with complex-valued coefficients. Asymptotic properties are studied by means of a Lyapunov-Krasovskii functional and the suitable Ważewski topological principle. The results generalize some previous ones, where the asymptotic properties for two-dimensional systems with one constant or nonconstant delay were studied.

Suggested Citation

  • Zdeněk Šmarda & Josef Rebenda, 2012. "Asymptotic Behaviour of a Two-Dimensional Differential System with a Finite Number of Nonconstant Delays under the Conditions of Instability," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-20, August.
  • Handle: RePEc:hin:jnlaaa:952601
    DOI: 10.1155/2012/952601
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2012/952601.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2012/952601.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/952601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:952601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.