IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/934569.html
   My bibliography  Save this article

A Three-Species Food Chain System with Two Types of Functional Responses

Author

Listed:
  • Younghae Do
  • Hunki Baek
  • Yongdo Lim
  • Dongkyu Lim

Abstract

In recent decades, many researchers have investigated the ecological models with three and more species to understand complex dynamical behaviors of ecological systems in nature. However, when they studied the models with three species, they have just considered the functional responses between prey and mid-predator and between mid-predator and top predator as the same type. However, in the paper, in order to describe more realistic ecological world, a three-species food chain system with two types of functional response, Holling type and Beddington-DeAngelis type, is considered. It is shown that this system is dissipative. Also, the local and global stability of equilibrium points of the system is established. In addition, conditions for the persistence of the system are found according to the existence of limit cycles. Some numerical examples are given to substantiate our theoretical results. Moreover, we provide numerical evidence of the existence of chaotic phenomena by illustrating bifurcation diagrams of system and by calculating the largest Lyapunov exponent.

Suggested Citation

  • Younghae Do & Hunki Baek & Yongdo Lim & Dongkyu Lim, 2011. "A Three-Species Food Chain System with Two Types of Functional Responses," Abstract and Applied Analysis, Hindawi, vol. 2011, pages 1-16, March.
  • Handle: RePEc:hin:jnlaaa:934569
    DOI: 10.1155/2011/934569
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2011/934569.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2011/934569.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2011/934569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jana, Debaldev & Agrawal, Rashmi & Upadhyay, Ranjit Kumar, 2014. "Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 50-63.
    2. Lina Wang & Hui Chang & Yuxia Li, 2020. "Dynamics Analysis and Chaotic Control of a Fractional-Order Three-Species Food-Chain System," Mathematics, MDPI, vol. 8(3), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:934569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.