IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/930541.html
   My bibliography  Save this article

Bifurcation Analysis of an SIR Epidemic Model with the Contact Transmission Function

Author

Listed:
  • Guihua Li
  • Gaofeng Li

Abstract

We consider an SIR endemic model in which the contact transmission function is related to the number of infected population. By theoretical analysis, it is shown that the model exhibits the bistability and undergoes saddle-node bifurcation, the Hopf bifurcation, and the Bogdanov-Takens bifurcation. Furthermore, we find that the threshold value of disease spreading will be increased, when the half-saturation coefficient is more than zero, which means that it is an effective intervention policy adopted for disease spreading. However, when the endemic equilibria exist, we find that the disease can be controlled as long as we let the initial values lie in the certain range by intervention policy. This will provide a theoretical basis for the prevention and control of disease.

Suggested Citation

  • Guihua Li & Gaofeng Li, 2014. "Bifurcation Analysis of an SIR Epidemic Model with the Contact Transmission Function," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-7, January.
  • Handle: RePEc:hin:jnlaaa:930541
    DOI: 10.1155/2014/930541
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/930541.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/930541.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/930541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:930541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.