IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/928347.html
   My bibliography  Save this article

Exact solutions of the semi-infinite Toda lattice with applications to the inverse spectral problem

Author

Listed:
  • E. K. Ifantis
  • K. N. Vlachou

Abstract

Several inverse spectral problems are solved by a method which is based on exact solutions of the semi-infinite Toda lattice. In fact, starting with a well-known and appropriate probability measure μ , the solution α n ( t ) , b n ( t ) of the Toda lattice is exactly determined and by taking t = 0 , the solution α n ( 0 ) , b n ( 0 ) of the inverse spectral problem is obtained. The solutions of the Toda lattice which are found in this way are finite for every t > 0 and can also be obtained from the solutions of a simple differential equation. Many other exact solutions obtained from this differential equation show that there exist initial conditions α n ( 0 ) > 0 and b n ( 0 ) ∈ ℝ such that the semi-infinite Toda lattice is not integrable in the sense that the functions α n ( t ) and b n ( t ) are not finite for every t > 0 .

Suggested Citation

  • E. K. Ifantis & K. N. Vlachou, 2004. "Exact solutions of the semi-infinite Toda lattice with applications to the inverse spectral problem," Abstract and Applied Analysis, Hindawi, vol. 2004, pages 1-17, January.
  • Handle: RePEc:hin:jnlaaa:928347
    DOI: 10.1155/S1085337504306135
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2004/928347.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2004/928347.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/S1085337504306135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:928347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.