IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/875194.html
   My bibliography  Save this article

On the Discrete Spectrum of a Model Operator in Fermionic Fock Space

Author

Listed:
  • Zahriddin Muminov
  • Fudziah Ismail
  • Zainidin Eshkuvatov
  • Jamshid Rasulov

Abstract

We consider a model operator associated with a system describing three particles in interaction, without conservation of the number of particles. The operator acts in the direct sum of zero-, one-, and two-particle subspaces of the fermionic Fock space  over . We admit a general form for the "kinetic" part of the Hamiltonian , which contains a parameter to distinguish the two identical particles from the third one. (i) We find a critical value for the parameter that allows or forbids the Efimov effect (infinite number of bound states if the associated generalized Friedrichs model has a threshold resonance) and we prove that only for the Efimov effect is absent, while this effect exists for any . (ii) In the case , we also establish the following asymptotics for the number of eigenvalues of below , for all .

Suggested Citation

  • Zahriddin Muminov & Fudziah Ismail & Zainidin Eshkuvatov & Jamshid Rasulov, 2013. "On the Discrete Spectrum of a Model Operator in Fermionic Fock Space," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-12, May.
  • Handle: RePEc:hin:jnlaaa:875194
    DOI: 10.1155/2013/875194
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/875194.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/875194.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/875194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:875194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.