IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/747503.html
   My bibliography  Save this article

Alternative Forms of Compound Fractional Poisson Processes

Author

Listed:
  • Luisa Beghin
  • Claudio Macci

Abstract

We study here different fractional versions of the compound Poisson process. The fractionality is introduced in the counting process representing the number of jumps as well as in the density of the jumps themselves. The corresponding distributions are obtained explicitly and proved to be solution of fractional equations of order less than one. Only in the final case treated in this paper, where the number of jumps is given by the fractional-difference Poisson process defined in Orsingher and Polito (2012), we have a fractional driving equation, with respect to the time argument, with order greater than one. Moreover, in this case, the compound Poisson process is Markovian and this is also true for the corresponding limiting process. All the processes considered here are proved to be compositions of continuous time random walks with stable processes (or inverse stable subordinators). These subordinating relationships hold, not only in the limit, but also in the finite domain. In some cases the densities satisfy master equations which are the fractional analogues of the well-known Kolmogorov one.

Suggested Citation

  • Luisa Beghin & Claudio Macci, 2012. "Alternative Forms of Compound Fractional Poisson Processes," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-30, October.
  • Handle: RePEc:hin:jnlaaa:747503
    DOI: 10.1155/2012/747503
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2012/747503.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2012/747503.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/747503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Alipour & Luisa Beghin & Davood Rostamy, 2015. "Generalized Fractional Nonlinear Birth Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 525-540, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:747503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.