IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/715054.html
   My bibliography  Save this article

Convergence Rates in the Law of Large Numbers for Arrays of Banach Valued Martingale Differences

Author

Listed:
  • Shunli Hao

Abstract

We study the convergence rates in the law of large numbers for arrays of Banach valued martingale differences. Under a simple moment condition, we show sufficient conditions about the complete convergence for arrays of Banach valued martingale differences; we also give a criterion about the convergence for arrays of Banach valued martingale differences. In the special case where the array of Banach valued martingale differences is the sequence of independent and identically distributed real valued random variables, our result contains the theorems of Hsu-Robbins-Erdös (1947, 1949, and 1950), Spitzer (1956), and Baum and Katz (1965). In the real valued single martingale case, it generalizes the results of Alsmeyer (1990). The consideration of Banach valued martingale arrays (rather than a Banach valued single martingale) makes the results very adapted in the study of weighted sums of identically distributed Banach valued random variables, for which we prove new theorems about the rates of convergence in the law of large numbers. The results are established in a more general setting for sums of infinite many Banach valued martingale differences. The obtained results improve and extend those of Ghosal and Chandra (1998).

Suggested Citation

  • Shunli Hao, 2013. "Convergence Rates in the Law of Large Numbers for Arrays of Banach Valued Martingale Differences," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-26, November.
  • Handle: RePEc:hin:jnlaaa:715054
    DOI: 10.1155/2013/715054
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/715054.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/715054.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/715054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:715054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.