IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/686274.html
   My bibliography  Save this article

Hopf Bifurcation Analysis in a Modified Price Differential Equation Model with Two Delays

Author

Listed:
  • Yanhui Zhai
  • Ying Xiong
  • Xiaona Ma

Abstract

The paper investigates the behavior of price differential equation model based on economic theory with two delays. The primary aim of this thesis is to provide a research method to explore the undeveloped areas of the price model with two delays. Firstly, we modify the traditional price model by considering demand function as a downward opening quadratic function, and supply and demand functions both depending on the price of the past and the present. Then the price model with two delays is established. Secondly, by considering the price model with one delay, we get the stable interval. Regarding another delay as a parameter, we studied the linear stability and local Hopf bifurcation. In addition, we pay attention to the direction and stability of the bifurcating periodic solutions which are derived by using the normal form theory and center manifold method. Afterwards, the study turns to simulate the results through numerical analysis, which shows that the provided method is valid.

Suggested Citation

  • Yanhui Zhai & Ying Xiong & Xiaona Ma, 2014. "Hopf Bifurcation Analysis in a Modified Price Differential Equation Model with Two Delays," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-8, March.
  • Handle: RePEc:hin:jnlaaa:686274
    DOI: 10.1155/2014/686274
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/686274.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/686274.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/686274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:686274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.