IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/675202.html
   My bibliography  Save this article

The Exit Time and the Dividend Value Function for One-Dimensional Diffusion Processes

Author

Listed:
  • Peng Li
  • Chuancun Yin
  • Ming Zhou

Abstract

We investigate the exit times from an interval for a general one-dimensional time-homogeneous diffusion process and their applications to the dividend problem in risk theory. Specifically, we first use Dynkin’s formula to derive the ordinary differential equations satisfied by the Laplace transform of the exit times. Then, as some examples, we solve the closed-form expression of the Laplace transform of the exit times for several popular diffusions, which are commonly used in modelling of finance and insurance market. Most interestingly, as the applications of the exit times, we create the connect between the dividend value function and the Laplace transform of the exit times. Both the barrier and threshold dividend value function are clearly expressed in terms of the Laplace transform of the exit times.

Suggested Citation

  • Peng Li & Chuancun Yin & Ming Zhou, 2013. "The Exit Time and the Dividend Value Function for One-Dimensional Diffusion Processes," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, November.
  • Handle: RePEc:hin:jnlaaa:675202
    DOI: 10.1155/2013/675202
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/675202.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/675202.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/675202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:675202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.