IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/670263.html
   My bibliography  Save this article

Nonlinear Pulse Vaccination in an SIR Epidemic Model with Resource Limitation

Author

Listed:
  • Wenjie Qin
  • Sanyi Tang
  • Robert A. Cheke

Abstract

Mathematical models can assist in the design and understanding of vaccination strategies when resources are limited. Here we propose and analyse an SIR epidemic model with a nonlinear pulse vaccination to examine how a limited vaccine resource affects the transmission and control of infectious diseases, in particular emerging infectious diseases. The threshold condition for the stability of the disease free steady state is given. Latin Hypercube Sampling/Partial Rank Correlation Coefficient uncertainty and sensitivity analysis techniques were employed to determine the key factors which are most significantly related to the threshold value. Comparing this threshold value with that without resource limitation, our results indicate that if resources become limited pulse vaccination should be carried out more frequently than when sufficient resources are available to eradicate an infectious disease. Once the threshold value exceeds a critical level, both susceptible and infected populations can oscillate periodically. Furthermore, when the pulse vaccination period is chosen as a bifurcation parameter, the SIR model with nonlinear pulse vaccination reveals complex dynamics including period doubling, chaotic solutions, and coexistence of multiple attractors. The implications of our findings with respect to disease control are discussed.

Suggested Citation

  • Wenjie Qin & Sanyi Tang & Robert A. Cheke, 2013. "Nonlinear Pulse Vaccination in an SIR Epidemic Model with Resource Limitation," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-13, December.
  • Handle: RePEc:hin:jnlaaa:670263
    DOI: 10.1155/2013/670263
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/670263.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/670263.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/670263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Wenjie & Tang, Sanyi, 2014. "The selection pressures induced non-smooth infectious disease model and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 160-171.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:670263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.