IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/643783.html
   My bibliography  Save this article

Convergence of the Euler Method of Stochastic Differential Equations with Piecewise Continuous Arguments

Author

Listed:
  • Ling Zhang
  • Minghui Song

Abstract

The main purpose of this paper is to investigate the strong convergence of the Euler method to stochastic differential equations with piecewise continuous arguments (SEPCAs). Firstly, it is proved that the Euler approximation solution converges to the analytic solution under local Lipschitz condition and the bounded th moment condition. Secondly, the Euler approximation solution converge to the analytic solution is given under local Lipschitz condition and the linear growth condition. Then an example is provided to show which is satisfied with the monotone condition without the linear growth condition. Finally, the convergence of numerical solutions to SEPCAs under local Lipschitz condition and the monotone condition is established.

Suggested Citation

  • Ling Zhang & Minghui Song, 2012. "Convergence of the Euler Method of Stochastic Differential Equations with Piecewise Continuous Arguments," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-16, December.
  • Handle: RePEc:hin:jnlaaa:643783
    DOI: 10.1155/2012/643783
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2012/643783.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2012/643783.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/643783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Huizi & Song, Minghui & Liu, Mingzhu, 2019. "Strong convergence and exponential stability of stochastic differential equations with piecewise continuous arguments for non-globally Lipschitz continuous coefficients," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 111-127.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:643783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.