IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/6417074.html
   My bibliography  Save this article

The Aronsson Equation, Lyapunov Functions, and Local Lipschitz Regularity of the Minimum Time Function

Author

Listed:
  • Pierpaolo Soravia

Abstract

We define and study - solutions of the Aronsson equation (AE), a second order quasi linear equation. We show that such super/subsolutions make the Hamiltonian monotone on the trajectories of the closed loop Hamiltonian dynamics. We give a short, general proof that - solutions are absolutely minimizing functions. We discuss how - supersolutions of (AE) become special Lyapunov functions of symmetric control systems, and allow to find continuous feedbacks driving the system to a target in finite time, except on a singular manifold. A consequence is a simple proof that the corresponding minimum time function is locally Lipschitz continuous away from the singular manifold, despite classical results showing that it should only be Hölder continuous unless appropriate conditions hold. We provide two examples for Hörmander and Grushin families of vector fields where we construct - solutions (even classical) explicitly.

Suggested Citation

  • Pierpaolo Soravia, 2019. "The Aronsson Equation, Lyapunov Functions, and Local Lipschitz Regularity of the Minimum Time Function," Abstract and Applied Analysis, Hindawi, vol. 2019, pages 1-9, December.
  • Handle: RePEc:hin:jnlaaa:6417074
    DOI: 10.1155/2019/6417074
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2019/6417074.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2019/6417074.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6417074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:6417074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.