IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/603535.html
   My bibliography  Save this article

Stochastic Synchronization of Reaction-Diffusion Neural Networks under General Impulsive Controller with Mixed Delays

Author

Listed:
  • Xinsong Yang
  • Chuangxia Huang
  • Zhichun Yang

Abstract

This paper investigates drive-response synchronization of a class of reaction-diffusion neural networks with time-varying discrete and distributed delays via general impulsive control method. Stochastic perturbations in the response system are also considered. The impulsive controller is assumed to be nonlinear and has multiple time-varying discrete and distributed delays. Compared with existing nondelayed impulsive controller, this general impulsive controller is more practical and essentially important since time delays are unavoidable in practical operation. Based on a novel impulsive differential inequality, the properties of random variables and Lyapunov functional method, sufficient conditions guaranteeing the global exponential synchronization in mean square are derived through strict mathematical proof. In our synchronization criteria, the distributed delays in both continuous equation and impulsive controller play important role. Finally, numerical simulations are given to show the effectiveness of the theoretical results.

Suggested Citation

  • Xinsong Yang & Chuangxia Huang & Zhichun Yang, 2012. "Stochastic Synchronization of Reaction-Diffusion Neural Networks under General Impulsive Controller with Mixed Delays," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-25, December.
  • Handle: RePEc:hin:jnlaaa:603535
    DOI: 10.1155/2012/603535
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2012/603535.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2012/603535.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/603535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Sun, Li & Zhu, Haitao & Ding, Yanhui, 2020. "Impulsive control for persistence and periodicity of logistic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 294-305.
    3. Wang, Wei & Huang, Chi & Huang, Chuangxia & Cao, Jinde & Lu, Jianquan & Wang, Li, 2020. "Bipartite formation problem of second-order nonlinear multi-agent systems with hybrid impulses," Applied Mathematics and Computation, Elsevier, vol. 370(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:603535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.