IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/589282.html
   My bibliography  Save this article

An Iterative Shrinking Metric -Projection Method for Finding a Common Fixed Point of a Closed and Quasi-Strict -Pseudocontraction and a Countable Family of Firmly Nonexpansive Mappings and Applications in Hilbert Spaces

Author

Listed:
  • Kasamsuk Ungchittrakool
  • Duangkamon Kumtaeng

Abstract

We create some new ideas of mappings called quasi-strict -pseudocontractions. Moreover, we also find the significant inequality related to such mappings and firmly nonexpansive mappings within the framework of Hilbert spaces. By using the ideas of metric -projection, we propose an iterative shrinking metric -projection method for finding a common fixed point of a quasi-strict -pseudocontraction and a countable family of firmly nonexpansive mappings. In addition, we provide some applications of the main theorem to find a common solution of fixed point problems and generalized mixed equilibrium problems as well as other related results.

Suggested Citation

  • Kasamsuk Ungchittrakool & Duangkamon Kumtaeng, 2013. "An Iterative Shrinking Metric -Projection Method for Finding a Common Fixed Point of a Closed and Quasi-Strict -Pseudocontraction and a Countable Family of Firmly Nonexpansive Mappings and Application," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, December.
  • Handle: RePEc:hin:jnlaaa:589282
    DOI: 10.1155/2013/589282
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/589282.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/589282.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/589282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:589282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.