IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/546502.html
   My bibliography  Save this article

Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems

Author

Listed:
  • D. Baleanu
  • A. H. Bhrawy
  • T. M. Taha

Abstract

We present a direct solution technique for approximating linear multiterm fractional differential equations (FDEs) on semi-infinite interval, using generalized Laguerre polynomials. We derive the operational matrix of Caputo fractional derivative of the generalized Laguerre polynomials which is applied together with generalized Laguerre tau approximation for implementing a spectral solution of linear multiterm FDEs on semi-infinite interval subject to initial conditions. The generalized Laguerre pseudo-spectral approximation based on the generalized Laguerre operational matrix is investigated to reduce the nonlinear multiterm FDEs and its initial conditions to nonlinear algebraic system, thus greatly simplifying the problem. Through several numerical examples, we confirm the accuracy and performance of the proposed spectral algorithms. Indeed, the methods yield accurate results, and the exact solutions are achieved for some tested problems.

Suggested Citation

  • D. Baleanu & A. H. Bhrawy & T. M. Taha, 2013. "Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-10, June.
  • Handle: RePEc:hin:jnlaaa:546502
    DOI: 10.1155/2013/546502
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/546502.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/546502.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/546502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kedia, Nikki & Alikhanov, Anatoly A. & Singh, Vineet Kumar, 2024. "Robust finite difference scheme for the non-linear generalized time-fractional diffusion equation with non-smooth solution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 337-354.
    2. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Haromi, Malih Farzi, 2019. "A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 215-228.
    3. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:546502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.