IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/540351.html
   My bibliography  Save this article

Existence of Solutions for Riemann-Liouville Fractional Boundary Value Problem

Author

Listed:
  • Wenzhe Xie
  • Jing Xiao
  • Zhiguo Luo

Abstract

By using the method of upper and lower solutions and fixed point theorems, the existence of solutions for a Riemann-Liouville fractional boundary value problem with the nonlinear term depending on fractional derivative of lower order is obtained under the classical Nagumo conditions. Also, some results concerning Riemann-Liouville fractional derivative at extreme points are established with weaker hypotheses, which improve some works in Al-Refai (2012). As applications, an example is presented to illustrate our main results.

Suggested Citation

  • Wenzhe Xie & Jing Xiao & Zhiguo Luo, 2014. "Existence of Solutions for Riemann-Liouville Fractional Boundary Value Problem," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-9, July.
  • Handle: RePEc:hin:jnlaaa:540351
    DOI: 10.1155/2014/540351
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/540351.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/540351.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/540351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Di & Guo Chen & Huihui Pang, 2020. "Coupled Systems of Nonlinear Integer and Fractional Differential Equations with Multi-Point and Multi-Strip Boundary Conditions," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
    2. Panda, Sumati Kumari & Abdeljawad, Thabet & Ravichandran, C., 2020. "A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:540351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.