IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/535793.html
   My bibliography  Save this article

Numerical Solutions of Nonlinear Fractional Partial Differential Equations Arising in Spatial Diffusion of Biological Populations

Author

Listed:
  • Jagdev Singh
  • Devendra Kumar
  • Adem Kılıçman

Abstract

The main aim of this work is to present a user friendly numerical algorithm based on homotopy perturbation Sumudu transform method for nonlinear fractional partial differential arising in spatial diffusion of biological populations in animals. The movements are made generally either by mature animals driven out by invaders or by young animals just reaching maturity moving out of their parental territory to establish breeding territory of their own. The homotopy perturbation Sumudu transform method is a combined form of the Sumudu transform method and homotopy perturbation method. The obtained results are compared with Sumudu decomposition method. The numerical solutions obtained by the proposed method indicate that the approach is easy to implement and accurate. These results reveal that the proposed method is computationally very attractive.

Suggested Citation

  • Jagdev Singh & Devendra Kumar & Adem Kılıçman, 2014. "Numerical Solutions of Nonlinear Fractional Partial Differential Equations Arising in Spatial Diffusion of Biological Populations," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-12, August.
  • Handle: RePEc:hin:jnlaaa:535793
    DOI: 10.1155/2014/535793
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/535793.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/535793.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/535793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdel-Gawad, Hamdy I. & Baleanu, Dumitru & Abdel-Gawad, Ahmed H., 2021. "Unification of the different fractional time derivatives: An application to the epidemic-antivirus dynamical system in computer networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Singh, Jagdev & Kumar, Devendra & Nieto, Juan J., 2017. "Analysis of an El Nino-Southern Oscillation model with a new fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 109-115.
    3. Uçar, Sümeyra & Uçar, Esmehan & Özdemir, Necati & Hammouch, Zakia, 2019. "Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 300-306.
    4. Humaira Yasmin & Noufe H. Aljahdaly & Abdulkafi Mohammed Saeed & Rasool Shah, 2023. "Investigating Symmetric Soliton Solutions for the Fractional Coupled Konno–Onno System Using Improved Versions of a Novel Analytical Technique," Mathematics, MDPI, vol. 11(12), pages 1-30, June.
    5. Bhuvaneswari Sambandham & Aghalaya S. Vatsala, 2015. "Basic Results for Sequential Caputo Fractional Differential Equations," Mathematics, MDPI, vol. 3(1), pages 1-16, March.
    6. Nazir, Aqsa & Ahmed, Naveed & Khan, Umar & Mohyud-din, Syed Tauseef, 2020. "On stability of improved conformable model for studying the dynamics of a malnutrition community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Erman, Sertaç & Demir, Ali, 2020. "On the construction and stability analysis of the solution of linear fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:535793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.