IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/519705.html
   My bibliography  Save this article

Recognition of Process Disturbances for an SPC/EPC Stochastic System Using Support Vector Machine and Artificial Neural Network Approaches

Author

Listed:
  • Yuehjen E. Shao

Abstract

Because of the excellent performance on monitoring and controlling an autocorrelated process, the integration of statistical process control (SPC) and engineering process control (EPC) has drawn considerable attention in recent years. Both theoretical and empirical findings have suggested that the integration of SPC and EPC can be an effective way to improve the quality of a process, especially when the underlying process is autocorrelated. However, because EPC compensates for the effects of underlying disturbances, the disturbance patterns are embedded and hard to be recognized. Effective recognition of disturbance patterns is a very important issue for process improvement since disturbance patterns would be associated with certain assignable causes which affect the process. In practical situations, after compensating by EPC, the underlying disturbance patterns could be of any mixture types which are totally different from the original patterns. This study proposes the integration of support vector machine (SVM) and artificial neural network (ANN) approaches to recognize the disturbance patterns of the underlying disturbances. Experimental results revealed that the proposed schemes are able to effectively recognize various disturbance patterns of an SPC/EPC system.

Suggested Citation

  • Yuehjen E. Shao, 2014. "Recognition of Process Disturbances for an SPC/EPC Stochastic System Using Support Vector Machine and Artificial Neural Network Approaches," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-9, June.
  • Handle: RePEc:hin:jnlaaa:519705
    DOI: 10.1155/2014/519705
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/519705.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/519705.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/519705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Ding Hou & Rung-Hung Su, 2024. "An Outlier Detection Approach to Recognize the Sources of a Process Failure within a Multivariate Poisson Process," Mathematics, MDPI, vol. 12(18), pages 1-10, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:519705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.