IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/3795120.html
   My bibliography  Save this article

A Variation on Uncertainty Principle and Logarithmic Uncertainty Principle for Continuous Quaternion Wavelet Transforms

Author

Listed:
  • Mawardi Bahri
  • Ryuichi Ashino

Abstract

The continuous quaternion wavelet transform (CQWT) is a generalization of the classical continuous wavelet transform within the context of quaternion algebra. First of all, we show that the directional quaternion Fourier transform (QFT) uncertainty principle can be obtained using the component-wise QFT uncertainty principle. Based on this method, the directional QFT uncertainty principle using representation of polar coordinate form is easily derived. We derive a variation on uncertainty principle related to the QFT. We state that the CQWT of a quaternion function can be written in terms of the QFT and obtain a variation on uncertainty principle related to the CQWT. Finally, we apply the extended uncertainty principles and properties of the CQWT to establish logarithmic uncertainty principles related to generalized transform.

Suggested Citation

  • Mawardi Bahri & Ryuichi Ashino, 2017. "A Variation on Uncertainty Principle and Logarithmic Uncertainty Principle for Continuous Quaternion Wavelet Transforms," Abstract and Applied Analysis, Hindawi, vol. 2017, pages 1-11, January.
  • Handle: RePEc:hin:jnlaaa:3795120
    DOI: 10.1155/2017/3795120
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2017/3795120.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2017/3795120.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/3795120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:3795120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.