IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/306746.html
   My bibliography  Save this article

A New Legendre Spectral Galerkin and Pseudo-Spectral Approximations for Fractional Initial Value Problems

Author

Listed:
  • A. H. Bhrawy
  • M. A. Alghamdi

Abstract

We extend the application of the Galerkin method for treating the multiterm fractional differential equations (FDEs) subject to initial conditions. A new shifted Legendre-Galerkin basis is constructed which satisfies exactly the homogeneous initial conditions by expanding the unknown variable using a new polynomial basis of functions which is built upon the shifted Legendre polynomials. A new spectral collocation approximation based on the Gauss-Lobatto quadrature nodes of shifted Legendre polynomials is investigated for solving the nonlinear multiterm FDEs. The main advantage of this approximation is that the solution is expanding by a truncated series of Legendre-Galerkin basis functions. Illustrative examples are presented to ensure the high accuracy and effectiveness of the proposed algorithms are discussed.

Suggested Citation

  • A. H. Bhrawy & M. A. Alghamdi, 2013. "A New Legendre Spectral Galerkin and Pseudo-Spectral Approximations for Fractional Initial Value Problems," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-10, August.
  • Handle: RePEc:hin:jnlaaa:306746
    DOI: 10.1155/2013/306746
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/306746.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/306746.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/306746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:306746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.