IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/295936.html
   My bibliography  Save this article

An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

Author

Listed:
  • A. H. Bhrawy
  • M. A. Alghamdi
  • Eman S. Alaidarous

Abstract

One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs) as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.

Suggested Citation

  • A. H. Bhrawy & M. A. Alghamdi & Eman S. Alaidarous, 2014. "An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-14, April.
  • Handle: RePEc:hin:jnlaaa:295936
    DOI: 10.1155/2014/295936
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/295936.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/295936.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/295936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:295936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.