IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/294694.html
   My bibliography  Save this article

Uniqueness and Asymptotic Behavior of Positive Solutions for a Fractional-Order Integral Boundary Value Problem

Author

Listed:
  • Min Jia
  • Xin Liu
  • Xuemai Gu

Abstract

We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system ,   ,   ,   , where ,   and , is the standard Riemann-Liouville derivative, is linear functionals given by Riemann-Stieltjes integrals, is a function of bounded variation, and can be a changing-sign measure. The existence, uniqueness, and asymptotic behavior of positive solutions to the singular nonlocal integral boundary value problem for fractional differential equation are obtained. Our analysis relies on Schauder's fixed-point theorem and upper and lower solution method.

Suggested Citation

  • Min Jia & Xin Liu & Xuemai Gu, 2012. "Uniqueness and Asymptotic Behavior of Positive Solutions for a Fractional-Order Integral Boundary Value Problem," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-21, October.
  • Handle: RePEc:hin:jnlaaa:294694
    DOI: 10.1155/2012/294694
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2012/294694.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2012/294694.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/294694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:294694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.