IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/256249.html
   My bibliography  Save this article

Persistence and Nonpersistence of a Nonautonomous Stochastic Mutualism System

Author

Listed:
  • Peiyan Xia
  • Xiaokun Zheng
  • Daqing Jiang

Abstract

In this paper, a two-species nonautonomous stochastic mutualism system is investigated. The intrinsic growth rates of the two species at time are estimated by respectively. Viewing the different intensities of the noises , as two parameters at time , we conclude that there exists a global positive solution and the th moment of the solution is bounded. We also show that the system is permanent, including stochastic permanence, persistence in mean, and asymptotic boundedness in time average. Besides, we show that the large white noise will make the system nonpersistent. Finally, we establish sufficient criteria for the global attractivity of the system.

Suggested Citation

  • Peiyan Xia & Xiaokun Zheng & Daqing Jiang, 2013. "Persistence and Nonpersistence of a Nonautonomous Stochastic Mutualism System," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-13, February.
  • Handle: RePEc:hin:jnlaaa:256249
    DOI: 10.1155/2013/256249
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/256249.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/256249.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/256249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Fatini, M. & Taki, R. & Tridane, A., 2019. "Threshold behaviour of a stochastic epidemic model with two-dimensional noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 776-786.
    2. Settati, A. & Lahrouz, A. & Assadouq, A. & El Fatini, M. & El Jarroudi, M. & Wang, K., 2020. "The impact of nonlinear relapse and reinfection to derive a stochastic threshold for SIRI epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Settati, A. & Lahrouz, A. & Zahri, M. & Tridane, A. & El Fatini, M. & El Mahjour, H. & Seaid, M., 2021. "A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:256249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.