Author
Abstract
A molecular motor utilizes chemical free energy to generate a unidirectional motion through the viscous fluid. In many experimental settings and biological settings, a molecular motor is elastically linked to a cargo. The stochastic motion of a molecular motor-cargo system is governed by a set of Langevin equations, each corresponding to an individual chemical occupancy state. The change of chemical occupancy state is modeled by a continuous time discrete space Markov process. The probability density of a motor-cargo system is governed by a two-dimensional Fokker-Planck equation. The operation of a molecular motor is dominated by high viscous friction and large thermal fluctuations from surrounding fluid. The instantaneous velocity of a molecular motor is highly stochastic: the past velocity is quickly damped by the viscous friction and the new velocity is quickly excited by bombardments of surrounding fluid molecules. Thus, the theory for macroscopic motors should not be applied directly to molecular motors without close examination. In particular, a molecular motor behaves differently working against a viscous drag than working against a conservative force. The Stokes efficiency was introduced to measure how efficiently a motor uses chemical free energy to drive against viscous drag. For a motor without cargo, it was proved that the Stokes efficiency is bounded by 100% [H. Wang and G. Oster, (2002)]. Here, we present a proof for the general motor-cargo system.
Suggested Citation
Hongyun Wang & Hong Zhou, 2008.
"Stokes Efficiency of Molecular Motor-Cargo Systems,"
Abstract and Applied Analysis, Hindawi, vol. 2008, pages 1-13, May.
Handle:
RePEc:hin:jnlaaa:241736
DOI: 10.1155/2008/241736
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:241736. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.