IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/209367.html
   My bibliography  Save this article

Geometric data fitting

Author

Listed:
  • José L. Martínez-Morales

Abstract

Given a dense set of points lying on or near an embedded submanifold M 0 ⊂ ℝ n of Euclidean space, the manifold fitting problem is to find an embedding F : M → ℝ n that approximates M 0 in the sense of least squares. When the dataset is modeled by a probability distribution, the fitting problem reduces to that of finding an embedding that minimizes E d [ F ] , the expected square of the distance from a point in ℝ n to F ( M ) . It is shown that this approach to the fitting problem is guaranteed to fail because the functional E d has no local minima. This problem is addressed by adding a small multiple k of the harmonic energy functional to the expected square of the distance. Techniques from the calculus of variations are then used to study this modified functional.

Suggested Citation

  • José L. Martínez-Morales, 2004. "Geometric data fitting," Abstract and Applied Analysis, Hindawi, vol. 2004, pages 1-50, January.
  • Handle: RePEc:hin:jnlaaa:209367
    DOI: 10.1155/S1085337504401043
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2004/209367.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2004/209367.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/S1085337504401043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:209367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.