IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/130851.html
   My bibliography  Save this article

Spatiotemporal Patterns in a Ratio-Dependent Food Chain Model with Reaction-Diffusion

Author

Listed:
  • Lei Zhang

Abstract

Predator-prey models describe biological phenomena of pursuit-evasion interaction. And this interaction exists widely in the world for the necessary energy supplement of species. In this paper, we have investigated a ratio-dependent spatially extended food chain model. Based on the bifurcation analysis (Hopf and Turing), we give the spatial pattern formation via numerical simulation, that is, the evolution process of the system near the coexistence equilibrium point , and find that the model dynamics exhibits complex pattern replication. For fixed parameters, on increasing the control parameter , the sequence “holes holes-stripe mixtures stripes spots-stripe mixtures spots†pattern is observed. And in the case of pure Hopf instability, the model exhibits chaotic wave pattern replication. Furthermore, we consider the pattern formation in the case of which the top predator is extinct, that is, the evolution process of the system near the equilibrium point , and find that the model dynamics exhibits stripes-spots pattern replication. Our results show that reaction-diffusion model is an appropriate tool for investigating fundamental mechanism of complex spatiotemporal dynamics. It will be useful for studying the dynamic complexity of ecosystems.

Suggested Citation

  • Lei Zhang, 2014. "Spatiotemporal Patterns in a Ratio-Dependent Food Chain Model with Reaction-Diffusion," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-9, April.
  • Handle: RePEc:hin:jnlaaa:130851
    DOI: 10.1155/2014/130851
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/130851.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/130851.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/130851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:130851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.