IDEAS home Printed from https://ideas.repec.org/a/hin/jnijsa/417476.html
   My bibliography  Save this article

Queueing system with passive servers

Author

Listed:
  • Alexander N. Dudin
  • Valentina I. Klimenok

Abstract

In this paper the authors introduce systems in which customers are served by one active server and a group of passive servers. The calculation of response time for such systems is rendered by analyzing a special kind of queueing system in a synchronized random environment. For an embedded Markov chain, sufficient conditions for the existence of a stationary distribution are proved. A formula for the corresponding vector generating function is obtained. It is a matrix analog of the Pollaczek-Khinchin formula and is simultaneously a matrix functional equation. A method for solving this equation is proposed.

Suggested Citation

  • Alexander N. Dudin & Valentina I. Klimenok, 1996. "Queueing system with passive servers," International Journal of Stochastic Analysis, Hindawi, vol. 9, pages 1-20, January.
  • Handle: RePEc:hin:jnijsa:417476
    DOI: 10.1155/S1048953396000184
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJSA/9/417476.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJSA/9/417476.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/S1048953396000184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nitin Kumar & U. C. Gupta, 2020. "A Renewal Generated Geometric Catastrophe Model with Discrete-Time Markovian Arrival Process," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1293-1324, September.
    2. S. K. Samanta & M. L. Chaudhry & A. Pacheco, 2016. "Analysis of B M A P/M S P/1 Queue," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 419-440, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnijsa:417476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.