IDEAS home Printed from https://ideas.repec.org/a/hin/jnijde/7692849.html
   My bibliography  Save this article

Application of Residual Power Series Method to Fractional Coupled Physical Equations Arising in Fluids Flow

Author

Listed:
  • Anas Arafa
  • Ghada Elmahdy

Abstract

The approximate analytical solution of the fractional Cahn-Hilliard and Gardner equations has been acquired successfully via residual power series method (RPSM). The approximate solutions obtained by RPSM are compared with the exact solutions as well as the solutions obtained by homotopy perturbation method (HPM) and q-homotopy analysis method (q-HAM). Numerical results are known through different graphs and tables. The fractional derivatives are described in the Caputo sense. The results light the power, efficiency, simplicity, and reliability of the proposed method.

Suggested Citation

  • Anas Arafa & Ghada Elmahdy, 2018. "Application of Residual Power Series Method to Fractional Coupled Physical Equations Arising in Fluids Flow," International Journal of Differential Equations, Hindawi, vol. 2018, pages 1-10, July.
  • Handle: RePEc:hin:jnijde:7692849
    DOI: 10.1155/2018/7692849
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJDE/2018/7692849.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJDE/2018/7692849.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/7692849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Alaroud & Abedel-Karrem Alomari & Nedal Tahat & Shrideh Al-Omari & Anuar Ishak, 2023. "A Novel Solution Approach for Time-Fractional Hyperbolic Telegraph Differential Equation with Caputo Time Differentiation," Mathematics, MDPI, vol. 11(9), pages 1-19, May.
    2. Mohammed Kbiri Alaoui & Kamsing Nonlaopon & Ahmed M. Zidan & Adnan Khan & Rasool Shah, 2022. "Analytical Investigation of Fractional-Order Cahn–Hilliard and Gardner Equations Using Two Novel Techniques," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    3. Az-Zo’bi, Emad A. & Yıldırım, Ahmet & AlZoubi, Wael A., 2019. "The residual power series method for the one-dimensional unsteady flow of a van der Waals gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 188-196.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnijde:7692849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.