IDEAS home Printed from https://ideas.repec.org/a/hin/jnijde/649486.html
   My bibliography  Save this article

Solvability of Nonlinear Langevin Equation Involving Two Fractional Orders with Dirichlet Boundary Conditions

Author

Listed:
  • Bashir Ahmad
  • Juan J. Nieto

Abstract

We study a Dirichlet boundary value problem for Langevin equation involving two fractional orders. Langevin equation has been widely used to describe the evolution of physical phenomena in fluctuating environments. However, ordinary Langevin equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractal medium, numerous generalizations of Langevin equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Langevin equation. This gives rise to the fractional Langevin equation with a single index. Recently, a new type of Langevin equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskii's fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space.

Suggested Citation

  • Bashir Ahmad & Juan J. Nieto, 2010. "Solvability of Nonlinear Langevin Equation Involving Two Fractional Orders with Dirichlet Boundary Conditions," International Journal of Differential Equations, Hindawi, vol. 2010, pages 1-10, December.
  • Handle: RePEc:hin:jnijde:649486
    DOI: 10.1155/2010/649486
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJDE/2010/649486.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJDE/2010/649486.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2010/649486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Salem & Faris Alzahrani & Lamya Almaghamsi, 2019. "Fractional Langevin Equations with Nonlocal Integral Boundary Conditions," Mathematics, MDPI, vol. 7(5), pages 1-10, May.
    2. Fazli, Hossein & Nieto, Juan J., 2018. "Fractional Langevin equation with anti-periodic boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 332-337.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnijde:649486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.