IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/9919332.html
   My bibliography  Save this article

Prediction of Grain Yield in Henan Province Based on Grey BP Neural Network Model

Author

Listed:
  • Bingjun Li
  • Yifan Zhang
  • Shuhua Zhang
  • Wenyan Li
  • Filippo Cacace

Abstract

BP neural network (BPNN) is widely used due to its good generalization and robustness, but the model has the defect that it cannot automatically optimize the input variables. In response to this problem, this study uses the grey relational analysis method to rank the importance of input variables, obtains the key variables and the best BPNN model structure through multiple training and learning for the BPNN models, and proposes a variable optimization selection algorithm combining grey relational analysis and BP neural network. The predicted values from the metabolic GM (1, 1) model for key variables was used as input to the best BPNN model for prediction modeling, and a grey BP neural network model prediction model (GR-BPNN) was proposed. The long short-term memory neural network (LSTM), convolutional neural network (CNN), traditional BP neural network (BP), GM (1, N) model, and stepwise regression (SR) are also implemented as benchmark models to prove the superiority and applicability of the new model. Finally, the GR-BPNN forecasting model was applied to the grain yield forecast of the whole province and subregions for Henan Province. The forecasting results found that the growth rate of grain production in Henan Province slowed down and the center of gravity for grain production shifted northwards.

Suggested Citation

  • Bingjun Li & Yifan Zhang & Shuhua Zhang & Wenyan Li & Filippo Cacace, 2021. "Prediction of Grain Yield in Henan Province Based on Grey BP Neural Network Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-13, August.
  • Handle: RePEc:hin:jnddns:9919332
    DOI: 10.1155/2021/9919332
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ddns/2021/9919332.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ddns/2021/9919332.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9919332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifan Zhang & Bingjun Li, 2023. "Coupling coordination analysis of grain production and economic development in Huang-Huai-Hai region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13099-13124, November.
    2. Przemysław Leń & Michał Maciąg & Klaudia Maciąg, 2023. "Design of an Automated Algorithm for Delimiting Land Use/Soil Valuation Classes as a Tool Supporting Data Processing in the Land Consolidation Procedure," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    3. Grzegorz Oleniacz, 2021. "Czekanowski’s Diagram and Spatial Data Cluster Analysis for Planning Sustainable Development of Rural Areas," Sustainability, MDPI, vol. 13(20), pages 1-13, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:9919332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.