IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/979217.html
   My bibliography  Save this article

Stability Analysis of a Delayed SIR Epidemic Model with Stage Structure and Nonlinear Incidence

Author

Listed:
  • Xiaohong Tian
  • Rui Xu

Abstract

We investigate the stability of an SIR epidemic model with stage structure and time delay. By analyzing the eigenvalues of the corresponding characteristic equation, the local stability of each feasible equilibrium of the model is established. By using comparison arguments, it is proved when the basic reproduction number is less than unity, the disease free equilibrium is globally asymptotically stable. When the basic reproduction number is greater than unity, sufficient conditions are derived for the global stability of an endemic equilibrium of the model. Numerical simulations are carried out to illustrate the theoretical results.

Suggested Citation

  • Xiaohong Tian & Rui Xu, 2009. "Stability Analysis of a Delayed SIR Epidemic Model with Stage Structure and Nonlinear Incidence," Discrete Dynamics in Nature and Society, Hindawi, vol. 2009, pages 1-17, October.
  • Handle: RePEc:hin:jnddns:979217
    DOI: 10.1155/2009/979217
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2009/979217.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2009/979217.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2009/979217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raja Sekhara Rao, P. & Naresh Kumar, M., 2015. "A dynamic model for infectious diseases: The role of vaccination and treatment," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 34-49.
    2. Li, Jiarong & Jiang, Haijun & Yu, Zhiyong & Hu, Cheng, 2019. "Dynamical analysis of rumor spreading model in homogeneous complex networks," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 374-385.
    3. Xu, Changyong & Li, Xiaoyue, 2018. "The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 227-234.
    4. Wang, Jinling & Jiang, Haijun & Hu, Cheng & Yu, Zhiyong & Li, Jiarong, 2021. "Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:979217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.